生产者-消费者模式是一个十分经典的多线程并发协作的模式,弄懂生产者-消费者问题能够让我们对并发编程的理解加深。所谓生产者-消费者问题,实际上主要是包含了两类线程,一种是生产者线程用于生产数据,另一种是消费者线程用于消费数据,为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库,生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为;而消费者只需要从共享数据区中去获取数据,就不再需要关心生产者的行为。
Semaphore可以理解为**信号量**,用于控制资源能够被并发访问的线程数量,以保证多个线程能够合理的使用特定资源。Semaphore就相当于一个许可证,线程需要先通过acquire方法获取该许可证,该线程才能继续往下执行,否则只能在该方法出阻塞等待。当执行完业务功能后,需要通过`release()`方法将许可证归还,以便其他线程能够获得许可证继续执行。
在多线程协作完成业务功能时,有时候需要等待其他多个线程完成任务之后,主线程才能继续往下执行业务功能,在这种的业务场景下,通常可以使用Thread类的join方法,让主线程等待被join的线程执行完之后,主线程才能继续往下执行。当然,使用线程间消息通信机制也可以完成。其实,java并发工具类中为我们提供了类似“倒计时”这样的工具类,可以十分方便的完成所说的这种业务场景。
在并发编程中很容易出现并发安全的问题,有一个很简单的例子就是多线程更新变量i=1,比如多个线程执行i++操作,就有可能获取不到正确的值,而这个问题,最常用的方法是通过Synchronized进行控制来达到线程安全的目的([关于synchronized可以看这篇文章](https://www.jianshu.com/p/d53bf830fa09))。但是由于synchronized是采用的是悲观锁策略,并不是特别高效的一种解决方案。实际上,在J.U.C下的atomic包提供了一系列的操作简单,性能高效,并能保证线程安全的类去更新基本类型变量,数组元素,引用类型以及更新对象中的字段类型。atomic包下的这些类都是采用的是乐观锁策略去原子更新数据,在java中则是使用CAS操作具体实现。
在Executors框架体系中,FutureTask用来表示可获取结果的异步任务。FutureTask实现了Future接口,FutureTask提供了启动和取消异步任务,查询异步任务是否计算结束以及获取最终的异步任务的结果的一些常用的方法。通过`get()`方法来获取异步任务的结果,但是会阻塞当前线程直至异步任务执行结束。一旦任务执行结束,任务不能重新启动或取消,除非调用`runAndReset()`方法。
在多线程编程过程中,为了业务解耦和架构设计,经常会使用并发容器用于存储多线程间的共享数据,这样不仅可以保证线程安全,还可以简化各个线程操作。例如在“生产者-消费者”问题中,会使用阻塞队列(BlockingQueue)作为数据容器,关于BlockingQueue可以[看这篇文章](https://www.jianshu.com/p/c422ed5ea9ce)。为了加深对阻塞队列的理解,唯一的方式是对其实验原理进行理解,这篇文章就主要来看看ArrayBlockingQueue和LinkedBlockingQueue的实现原理。
在实际编程中,会经常使用到JDK中Collection集合框架中的各种容器类如实现List,Map,Queue接口的容器类,但是这些容器类基本上不是线程安全的,除了使用Collections可以将其转换为线程安全的容器,Doug Lea大师为我们都准备了对应的线程安全的容器,如实现List接口的CopyOnWriteArrayList([关于CopyOnWriteArrayList可以看这篇文章](https://www.jianshu.com/p/24ae1d6e3ce0)),实现Map接口的ConcurrentHashMap([关于ConcurrentHashMap可以看这篇文章](https://www.jianshu.com/p/c02a5627d0a5)),实现Queue接口的ConcurrentLinkedQueue([关于ConcurrentLinkedQueue可以看这篇文章](https://www.jianshu.com/p/001c45716232))。